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Chapter (1): Simple stresses and strains  

 

Simple Stresses: 

Normal (Direct Stress) 

One of the most fundamental types of stress that exists is normal stress, 

in which the stress acts perpendicular, or normal, to the cross-section of 

the load-carrying member.  

The intensity of normal force per unit area is termed the normal stress 

and is expressed in units of force per unit area, N/m2. If the forces 

applied to the ends of the bar are such that the bar is in tension, then 

tensile stresses are set up in the bar; if the bar is in compression we have 

compressive stresses. The line of action of the applied end forces passes 

through the centroid of each cross section of the bar. 

𝑠𝑡𝑟𝑒𝑠𝑠 (𝜎) =
𝑙𝑜𝑎𝑑

𝑎𝑟𝑒𝑎 
=

𝑃

𝐴
  

  
 

 
 
 
  

 
 
 
 
 
 
 

The area of the cross-section of the load-carrying member is taken 

perpendicular to the line of action of the force. 
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Normal Strain 

Let us suppose that the bar of Fig. 1-1 has tensile forces gradually 

applied to the ends. The elongation per unit length, which is termed 

normal strain and denoted by  may be found by dividing the total 

elongation Δ by the length L, i.e., 

 

 

The strain is usually expressed in units of meters per meter and 

consequently is dimensionless. 

Mechanical Properties of Materials 

The stress-strain curve shown in Fig. 1-3(a) may be used to characterize 

several strength characteristics of the material. They are: 

Proportional Limit 

The ordinate of the point P is known as the proportional limit, i.e., the 

maximum stress that may be developed during a simple tension test 

such that the stress is a linear function of strain. For a material having 

the stress-strain curve shown in Fig. 1-3(d), there is no propor onal 

limit. 
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Elastic Limit 

The ordinate of a point almost coincident with P is known as the elastic 

limit, i.e., the maximum stress that may be developed during a simple 

tension test such that there is no permanent or residual deformation 

when the load is entirely removed. For many materials the numerical 

values of the elastic limit and the proportional limit are almost identical 

and the terms are sometimes used synonymously. In those cases where 

the distinction between the two values is evident, the elastic limit is 

almost always greater than the proportional limit. 

 

 

Elastic and Plastic Ranges 

The region of the stress-strain curve extending from the origin to the 

proportional limit is called the elastic range. The region of the stress-

strain curve extending from the proportional limit to the point of 

rupture is called the plastic range. 

Yield Point 

The ordinate of the point Y in Fig. 1-3(a), denoted by syp, at which there 

is an increase in strain with no increase in stress, is known as the yield 

point of the material. After loading has progressed to the point Y, 
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yielding is said to take place. Some materials exhibit two points on the 

stress-strain curve at which there is an increase of strain without an 

increase of stress. These are called upper and lower yield points. 

Ultimate Strength or Tensile Strength 

The ordinate of the point U in Fig. 1-3(a), the maximum ordinate to the 

curve, is known either as the ultimate strength or the tensile strength of 

the material. 

Breaking Strength 

The ordinate of the point B in Fig. 1-3(a) is called the breaking strength 

of the material. 

 

Working Stress 

The above-mentioned strength characteristics may be used to select a 

working stress. Frequently such a stress  is determined merely by 

dividing either the stress at yield or the ultimate stress by a number 

termed the safety  factor. Selection of the safety factor is based upon the 

designer’s judgment and experience. Specific safety  factors are 

sometimes specified in design codes. 

Yield Strength 
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The ordinate to the stress-strain curve such that the material has a 

predetermined permanent deformation  or ‘‘set’’ when the load is 

removed is called the yield strength of the material. The permanent set 

is often  taken to be either 0.002 or 0.0035 mm per mm. These values 

are of course arbitrary. In Fig. 1-3(d) a set 1 is denoted on the strain axis 

and the line O′Y is drawn parallel to the initial tangent to the curve. The 

ordinate of Y represents the yield strength of the material, sometimes 

called the proof stress. 

 

Poisson’s Ratio 

When a bar is subjected to a simple tensile loading there is an increase 

in length of the bar in the direction  of the load, but a decrease in the 

lateral dimensions perpendicular to the load. The ratio of the strain in 

the  lateral direction to that in the axial direction is defined as Poisson’s 

ratio. It is denoted by the Greek letter .  For most metals it lies in the 

range 0.25 to 0.35. For cork, n is very nearly zero. 

Shear Modulus  

The material constant G is called the shear modulus of elasticity (or 

simply shear modulus), or the modulus of rigidity. The shear modulus 
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has the same units as the modulus of elasticity (Pa). G is related to the 

modulus of elasticity E and Poisson’s ratio  by 

 

General Form of Hooke’s Law 

The simple form of Hooke’s law has been given for axial tension when 

the loading is entirely along one straight line, i.e., uniaxial. Only the 

deformation in the direction of the load was considered 

 

In the more general case, an element of material is subject to three 
mutually perpendicular normal stresses x, y, z, which are 
accompanied by the strains x, y, z, respectively. By superposing the 
strain components arising from lateral contraction due to Poisson’s 
effect upon the direct strains we obtain the general statement of Hook’s 
law: 
 

 

Stress-Strain Curve 

As the axial load in Fig. 1-1 is gradually increased, the total elonga on 

over the bar length is measured at each increment of load and this is 

continued until fracture of the specimen takes place. Knowing the 

original cross-sectional area of the test specimen, the normal stress, 
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denoted by , may be obtained for any value of the axial load by the use 

of the relation 

 

 

where P denotes the axial load in newtons and A the original cross-

sectional area. Having obtained numerous pairs of values of normal 

stress  and normal strain , experimental data may be plotted with 

these quantities considered as ordinate and abscissa, respectively. This is 

the stress-strain curve or diagram of the material for this type of 

loading. Stress-strain diagrams assume widely differing forms for various 

materials. 

Figure 1-3(a) is the stress-strain diagram for a medium-carbon structural 

steel, Fig. 1-3(b) is for an alloy steel, and Fig. 1-3(c) is for hard steels and 

certain nonferrous alloys. For nonferrous alloys and cast iron the 

diagram has the form indicated in Fig. 1-3(d). 
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Ductile and Brittle Materials 

Metallic engineering materials are commonly classified as either ductile 

or brittle materials. A ductile material is one having a relatively large 

tensile strain up to the point of rupture (for example, structural steel or 

aluminum) whereas a brittle material has a relatively small strain up to 

this same point. An arbitrary strain of 0.05 mm/mm is frequently taken 

as the dividing line between these two classes of materials. Cast iron and 

concrete are examples of brittle materials. 

Hooke’s Law 

For any material having a stress-strain curve of the form shown in Fig. 1-

3(a), (b), or (c), it is evident that the relation between stress and strain is 

linear for comparatively small values of the strain. This linear relation 

between elongation and the axial force causing it is called Hooke’s law. 

To describe this initial linear range of action of the material we may 

consequently write 

 

where E denotes the slope of the straight-line portion OP of each of the 

curves in Figs.1-3(a), (b), and (c). 

The quantity E, i.e., the ratio of the unit stress to the unit strain, is the 

modulus of elasticity of the material in tension, or, as it is often called, 
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Young’s modulus. Values of E for various engineering materials are 

tabulated in handbooks. Since the unit strain is a pure number (being a 

ratio of two lengths) it is evident that E has the same units as does the 

stress, N/m2. 

For many common engineering materials the modulus of elasticity in 

compression is very nearly equal to that found in tension. It is to be 

carefully noted that the behavior of materials under load as discussed 

through the course is restricted (unless otherwise stated) to the linear 

region of the stress-strain curve. 

AXIAL DEFORMATION  

In the linear portion of the stress-strain diagram, the tress is 

proportional to strain and is given by 

 

 

 

 

Examples 
 
 
 

Stresses on inclined planes 
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When a bar of cross-sectional area A is subjected to an axial load P, the 

normal stress P=A acts on the cross section of the bar. Let us now 

consider the stresses that act on plane a-a that is inclined at the angle  

to the cross section, as shown below. Note that the area of the inclined 

plane is A=cos: To investigate the forces that act on this plane, we 

consider the free-body diagram of the segment of the bar shown. 

Because the segment is a two-force body, the resultant internal force 

acting on the inclined plane must be the axial force P, which can be 

resolved into the normal component P cos and the shear component P 

sin. Therefore, the corresponding stresses, shown are: 
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Examples 

Example (1): Figure below shows a support stand designed to carry 

downward loads. Compute the stress in the square shaft at the upper 

part of the stand for a load of 120 kN. The line of ac on of the applied 

load is centered on the axis of the shaft, and the load is applied through 

a thick plate that distributes the force to the entire cross-section of the 

stand. 
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Example (2):  

For the truss shown in Fig. (a), calculate the normal stresses in (1) 

member AC; and (2) member BD. The cross-sectional area of each 

member is 900 mm2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: 

Equilibrium analysis using the FBD of the entire truss in Fig. (a) gives 

the following values for the external reactions: 

 Ay =40 kN, Hy = 60 kN, and Hx = 0. 
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Solving the equations gives PAC = 53:33 kN (tension). Thus, the normal 

stress in member AC is: 
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Example (3):  

Figure below shows a two-member truss supporting a block of weight 

W. The cross-sectional areas of the members are 800 mm2 for AB and 

400 mm2 for AC. 

Determine the maximum safe value of W if the working stresses are 110 

MPa for AB and 120 MPa for AC. 

 

 

 

 

Solution: 
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Example (4): 

An aluminum rod is rigidly attached between a steel rod and a bronze 

rod as shown in Fig. below. Axial loads are applied at the positions 

indicated. Find the maximum value of P that will not exceed a stress in 

steel of 140 MPa, in aluminum of 90 MPa, or in bronze of 100 MPa. 
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Example (5): 

The homogeneous bar ABCD shown is supported by a cable that runs 
from A to B around the smooth peg at E, a vertical cable at C, and a 
smooth inclined surface at D. Determine the mass of the heaviest bar 
that can be supported if the stress in each cable is limited to 100 MPa. 
The area of the cable AB is 250 mm2 and that of the cable at C is 300 
mm2. 
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Example (6): The cross-sec onal area of bar ABCD is 600 mm2. 
Determine the maximum normal stress in the bar. 

 

 
 
 
 
 
Solution: 
 
Section CD: 

PCD=30 kN 

CD= 30*1000/600= 50 MPa 

 

Section BC: 

PBC=30-20 =10 kN 

CD= 10*1000/600= 16.67 MPa 

 

 
 
 
 
 
 
Section AB: 

PBC=30-20 +25=35 kN 

CD= 35*1000/600= 58.3 MPa 

 
 
 
Ans.: ma=58.3 MPa 
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Example (7): 
A steel rod having a cross-sec onal area of 300 mm2 and a length of 
150mm is suspended vertically from one end. It supports a tensile load 
of 20 kN at the lower end. If the unit mass of steel is 7850 kg/m3 and 
E=200 × 103 MN/m2, find the total elongation of the rod. 
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Example (8):  Determine the total increase of length of a bar of 

constant cross section hanging vertically and subject to its own weight as 

the only load. The bar is initially straight. 

 
 

SOLUTION: The normal stress (tensile) over any horizontal cross section 

is caused by the weight of the  material below that section. The 

elongation of the element of thickness dy shown is 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

where A denotes the cross-sectional area of the bar and g its specific 

weight (weight/unit volume). Integrating,  the total elongation of the bar 

is 

 

where W denotes the total weight of the bar. Note that the total 

elongation produced by the weight of the bar  is equal to that produced 

by a load of half its weight applied at the end. 
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Example (9): 

The rigid bar AB, attached to two vertical rods as shown, is horizontal 

before the load P is applied. Determine the vertical movement of P if its 

magnitude is 50 kN. 

 

 

 

 

Solution: 
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Example (10): 

The cross sec on of the 10-m-long flat steel bar AB has a constant 

thickness of 20 mm, but its width varies as shown in the figure. Calculate 

the elongation of the bar due to the 100-kN axial load. Use E = 200 GPa 

for steel. 
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Solution 

Equilibrium requires that the internal axial force P = 100 kN is constant 

along the entire length of the bar. However, the cross-sectional area A of 

the bar varies with the x-coordinate. 

We start by determining A as a function of x. The cross-sectional areas at 

A and B are AA = 20×40 = 800 mm2 and AB = 20  × 120 = 2400 mm2. 

Between A and B the cross-sectional area is a linear function of x: 
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Example (11): 

The 50-mm-diameter rubber rod is placed in a hole with rigid, lubricated 

walls. There is no clearance between the rod and the sides of the hole. 

Determine the change in the length of the rod when the 8-kN load is 

applied. Use E = 40 MPa and  = 0:45 for rubber. 
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Example (12): 
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1. Axial loads are applied to the compound rod that is composed of an 
aluminum segment rigidly connected between steel and bronze 
segments. What is the stress in each material given that P= 10 kN? 

 
 
 
 
 
 
 
 
Ans.:  
 

2. Find the maximum allowable value of P for the column. The 
cross-sectional areas and working stresses (w) are shown in the 
figure. 

 
 
 
 
Ans.: P=24 kN 
 
 
 
 
 
 
 
 
 
 
3. Determine the weight of the heaviest uniform cylinder that can be 

supported in the position shown without exceeding a stress of 50 
MPa in cable BC. Neglect friction and the weight of bar AB: The 
cross-sectional area of BC is 100 mm2 

 

Ans: W= 6 kN 
 

 

 

 

H.W-1 
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4. The 1000-kg uniform bar AB is suspended from two cables AC and 

BD; each with cross-sectional area 400 mm2. Find the magnitude P 
and location x of the largest additional vertical force that can be 
applied to the bar. The stresses in AC and BD are limited to 100 
MPa and 50 MPa, respectively. 

 

Ans.: 

 

 

 

 

 

 

 

 

5. Determine the smallest safe cross-sectional areas of members CD, 
GD, and GF for the truss shown. The working stresses are 140 MPa 
in tension and 100 MPa in compression. (The working stress in 
compression is smaller to reduce the danger of buckling.) 

 

Ans.:  
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6.  
 

 

 

 

 

 

 

 

Ans.: 0.354 mm 

 

7. 

 

 

 

 

 

 

Ans.:  2.50 mm 
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8. 

 

 

 

 

 

 

 

 

 

 

 

Ans.: 18 kN 

 

9.  A 400 mm long bar has rectangular cross-sec on 10 mm × 30 mm. 

This bar is subjected to (i) 15 kN tensile force on 10 mm × 30 mm faces, 

(ii) 80 kN compressive force on 10 mm × 400 mm faces, and (iii) 180 kN 

tensile force on 30 mm × 400 mm faces. Find the change in volume if E = 

2 × 105 N/mm2 and  = 0.3 

. 
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Shear Stresses 

By definition, normal stress acting on an interior plane is directed 

perpendicular to that plane. Shear stress, on the other hand, is tangent 

to the plane on which it acts. Shear stress arises whenever the applied 

loads cause one section of a body to slide past its adjacent section. In 

chapter (1), we examined how shear stress occurs in an axially loaded 

bar. Three other examples of shear stress are illustrated in below. Figure  

below shows two plates that are joined by a rivet. As seen in the FBD, 

the rivet must carry the shear force V = P. Because only one cross 

section of the rivet resists the shear, the rivet is said to be in single 

shear. The bolt of the clevis in Fig.(b) carries the load P across two cross-

sectional areas, the shear force being V = P=2 on each cross sec on. 

Therefore, the bolt is said to be in a state of double shear. In Fig. (c) a 

circular slug is being punched out of a metal sheet. Here the shear force 

is P and the shear area is similar to the milled edge of a coin. The loads 

shown are sometimes referred to as direct shear to distinguish them 

from the induced shear illustrated. 

The distribution of direct shear stress is usually complex and not easily 

determined. It is common practice to assume that the shear force V is 

uniformly distributed over the shear area A, so that the shear stress can 

be computed from 
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Examples of direct shear: (a) single shear in a rivet; (b) double shear in a 
bolt; and (c) shear in a metal sheet produced by a punch. 

 
 
 
 

EXAMPLES 

 

EXAMPLE (1):  

What force is required to punch a 20-mm-diameter hole in a plate that is 

25 mm thick? The shear strength is 350 MN/m2. 

 

 

 

 

 

 



Mechanics of Materials 

 
EXAMPLE (2):  

Find the smallest diameter bolt that can be used in the clevis shown if P = 

400 kN. The shearing strength of the bolt is 300 MPa. 

 

 

 

 

EXAMPLE (3):  

Compute the shearing stress in the pin at B for the member supported as 

shown. The pin diameter is 20 mm. 
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EXAMPLE (4):  

Two blocks of wood, width w and thickness t, are glued together along 

the joint inclined at the angle θ as shown. Using the free-body diagram 

concept in Fig. 1-4a, show that the shearing stress on the glued joint is τ = 

P sin 2θ/2A, where A is the cross-sectional area. 
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1- Bearing Stress  

Bearing stress is the contact pressure between the separate bodies. It 

differs from compressive stress, as it is an internal stress caused by 

compressive forces. 

 

 

 

 

 

 

 

 

EXAMPLES 

EXAMPLE (1): 

In Fig. below, assume that a 20-mm-diameter rivet joins the plates that 

are each 110 mm wide. The allowable stresses are 120 MPa for bearing in 

the plate material and 60 MPa for shearing of rivet. Determine (a) the 

minimum thickness of each plate; and (b) the largest average tensile 

stress in the plates. 
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EXAMPLE (2):  

Figure below shows a roof truss and the detail of the riveted connection at 

joint B. Using allowable stresses of τ = 70 MPa and σb= 140 MPa, how 

many 19-mm diameter rivets are required to fasten member BC to the 

gusset plate? Member BE? What is the largest average tensile or 

compressive stress in BC and BE? 
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H.W.2 

 
1- What force is required to punch a 20-mm-diameter hole in a plate that 

is 25 mm thick? The shear strength of the plate is 350 MN/m2. 

ANS.: 550 kN 

2-  Find the smallest diameter bolt that can be used in the clevis 11(b) 

if P = 400 kN. The working shear stress for the bolt is 300 MPa. 

 

ANS.: 29.1 mm  

3-  The lap joint is connected by three 20-mm-diameter rivets. 

Assuming that the axial load P = 50 kN is distributed equally 

among the three rivets, find (a) the shear stress in a rivet; (b) the 

bearing stress between a plate and a rivet; and (c) the maximum 

average tensile stress in each plate. 

 

 

 

 

 

 

ANS.: (a) 53.1 MPa; (b) 33.3 MPa; (c) 18.18 MPa 
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4-  The bell crank, which is in equilibrium under the forces shown in 

the figure, is supported by a 20-mm-diameter pin at D that is in 

double shear. Determine (a) the required diameter of the 

connecting rod AB, given that its tensile working stress is 100 

MPa; and (b) the shear stress in the pin. 

 

 

 

 

 

 

 

 

 

 

ANS.: (a) 19.92 mm; (b) 84.3 MPa 
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Statically Indeterminate Problems 

If the equilibrium equations are sufficient to calculate all the forces 

(including support reactions) that act on a body, these forces are said to 

be statically determinate. In statically determinate problems, the number 

of unknown forces is always equal to the number of independent 

equilibrium equations. If the number of unknown forces exceeds the 

number of independent equilibrium equations, the problem is said to be 

statically indeterminate. 

Static indeterminacy does not imply that the problem cannot be solved; it 

simply means that the solution cannot be obtained from the equilibrium 

equations alone. A statically indeterminate problem always has geometric 

restrictions imposed on its deformation. The mathematical expressions of 

these restrictions, known as the compatibility equations, provide us with 

the additional equations needed to solve the problem (the term 

compatibility refers to the geometric compatibility between deformation 

and the imposed constraints). Because the source of the compatibility 

equations is deformation, these equations contain as unknowns either 

strains or elongations. We can, however, use Hooke’s law to express the 

deformation measures in terms of stresses or forces. The equations of 

equilibrium and compatibility can then be solved for the unknown forces. 

Procedure for Solving Statically Indeterminate Problems 

 In summary, the solution of a statically indeterminate problem involves 

the following steps:  

 Draw the required free-body diagrams and derive the equations of 

 equilibrium. 

 Derive the compatibility equations. To visualize the restrictions on 

deformation, it is often helpful to draw a sketch that exaggerates 

the magnitudes of the deformations.  

 Use Hooke’s law to express the deformations (strains) in the 

compatibility equations in terms of forces (or stresses).  

 Solve the equilibrium and compatibility equations for the unknown 

forces. 
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EXAMPLES 

EXAMPLE (1):  

The concrete post is reinforced axially with four symmetrically placed 

steel bars, each of cross-sectional area 900 mm2. Compute the stress in 

each material when the 1000-kN axial load is applied. The moduli of 

elasticity are 200 GPa for steel and 14 GPa for concrete. 

 

SOLUTION: 
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EXAMPLE (2): 

Let the allowable stresses in the post described in example (1) be 

st=120MPa and co =6 MPa. Compute the maximum safe axial load P 

that may be applied. 

Solution 

From Eq. (d) in example (1), we see that equal strains require the 

following relationship between the stresses: 

 

 

 

 

 

 

 

 

 

 

 

Example (3): 
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Solution: 
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Example (4):  Three pillars, two of Aluminum and one of steel support a 

rigid platform of 250 kN as shown. If area of each Aluminum pillar is 

1200 mm2 and that of steel pillar is 1000 mm2, find the stresses developed 

in each pillar. 
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Example (5): A steel bolt of 20 mm diameter passes centrally through a 

copper tube of internal diameter 28 mm and external diameter 40 mm. 

The length of whole assembly is 600 mm. After tight fitting of the 

assembly, the nut is over tightened by quarter of a turn. What are the 

stresses introduced in the bolt and tube, if pitch of nut is 2 mm? 

Es = 2 × 105 N/mm2 and Ec = 1.2 × 105 N/mm2. 

 

 

 

 

 

Solution: Let the force shared by bolt be Ps and that by tube be Pc. Since 

there is no external force, static equilibrium condition gives Ps + Pc = 0 

or Ps = – Pc i.e., the two forces are equal in magnitude but opposite in 

nature. Obviously bolt is in tension and tube is in compression. 
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H.W.3  

1.  The rigid block of mass M is supported by the three symmetrically 
placed rods. The ends of the rods were level before the block was 
attached. Determine the largest allowable value of M if the properties of 
the rods are as listed (w is the working stress): 
 
 
 
 
 
 

 
 
 
 
 
 
2.  The concrete column is reinforced by four steel bars of total cross-
sectional area 1250 mm2. If the working stresses for steel and concrete 
are 180 MPa and 15 MPa, respectively, determine the largest axial force 
P that can be safely applied to the column. Est=200 GPa and Eco=24 GPa. 
 
ANS.: P=1.075 MN 
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3. Before the 400-kN load is applied, the rigid platform rests on two steel 
bars, each of cross-sectional area 1400 mm2, as shown in the figure. The 
cross-sectional area of the aluminum bar is 2800 mm2. Compute the 
stress in the aluminum bar after the 400-kN load is applied. Use E = 200 
GPa for steel and E = 70 GPa for aluminum. Neglect the weight of the 
platform. 

ANS.: 16.30 MPa (C)  
 
 

4. The rigid bar AB of negligible weight is supported by a pin at O. When 
the two steel rods are attached to the ends of the bar, there is a gap  
between the lower end of the left rod and its pin support at C. After 
attachment, the strain in the left rod is 1.5×10-3. What is the length of the 
gap ? The cross-sectional areas are 300 mm2 for rod AC and 250 mm2 
for rod BD. Use E = 200 GPa for steel. 


ANS.: 3.9mm 
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5. The homogeneous bar with a cross-sectional area of 600 mm2 is 
attached to rigid supports. The bar carries the axial loads P1 = 20 kN and 
P2 = 60 kN, as shown. Determine the stress in segment BC. 
 

 
 

ANS.: 25.9 MPa (T) 
 
 
6.  The rigid, homogeneous slab weighing 600 kN is supported by three 
rods of identical material and cross section. Before the slab was attached, 
the lower ends of the rods were at the same level. Compute the axial force 
in each rod. 
 

 
ANS.: PA= 239 kN,  PB = 184.2 kN,  PC = 177.2 kN 
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Thermal Stresses 

It is well known that changes in temperature cause dimensional changes 

in a body: An increase in temperature results in expansion, whereas a 

temperature decrease produces contraction. This deformation is isotropic 

(the same in every direction) and proportional to the temperature change. 

It follows that the associated strain, called thermal strain, is 

 

where the constant  is a material property known as the coefficient of 

thermal expansion, and T is the temperature change. The coefficient of 

thermal expansion represents the normal strain caused by a one-degree 

change in temperature. By convention, T is taken to be positive when 

the temperature increases, and negative when the temperature decreases. 

Thus, positive T produces positive strain (elongation) and negative T 

produces negative strain (contraction). The units of  are 1/oC . 

 

 

 

 

 

If the temperature change is uniform throughout the body, the thermal 

strain is also uniform. Consequently, the change in any dimension L of 

the body is given by 

 

 

 

 



Mechanics of Materials 

 
If thermal deformation is permitted to occur freely (by using expansion 

joints or roller supports, for example), no internal forces will be induced 

in the body—there will be strain, but no stress. In cases where the 

deformation of a body is restricted, either totally or partially, internal 

forces will develop that oppose the thermal expansion or contraction. The 

stresses caused by these internal forces are known as thermal stresses. 

The forces that result from temperature changes cannot be determined by 

equilibrium analysis alone; that is, these forces are statically 

indeterminate. 

Consequently, the analysis of thermal stresses follows the same principles 

that previously used: equilibrium, compatibility, and Hooke’s law. The 

only deference here is that we must now include thermal expansion in the 

analysis of deformation. 

 
Procedure for Deriving Compatibility Equations  

The following procedure for deriving the equations of compatibility are:  

 Remove the constraints that prevent the thermal deformation to occur 
freely (this procedure is sometimes referred to as ‘‘relaxing the 
supports’’). 

  Show the thermal deformation on a sketch using an exaggerated scale.  

  Apply the forces that are necessary to restore the specified conditions 
of constraint. Add the deformations caused by these forces to the 
sketch that was drawn in the previous step. (Draw the magnitudes of 
the deformations so that they are compatible with the geometric 
constraints.). 

  By inspection of the sketch, write the relationships between the 
thermal deformations and the deformations due to the constraint 
forces. 
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EXAMPLES 

 
Example (1): The horizontal steel rod, 2.5 m long and 1200 mm2 in 

cross-sectional area, is secured between two walls as shown. If the rod is 

stress-free at 20/oC, compute the stress when the temperature has dropped 

to -20/oC. Assume that (1) the walls do not move and (2) the walls move 

together a distance = 0.5 mm. Use  = 11.7 × 10 -6/oC and E=200 GPa. 

 

Solution:  
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Example 2:  The composite bar shown is rigidly fixed at the ends A and 

B. Determine the reaction developed at ends when the temperature is 

raised by 18°C. Given 
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EXAMPLE (3): A bar of brass 20 mm is enclosed in a steel tube of 40 
mm external diameter and 20 mm internal diameter. The bar and the 
tubes are initially 1.2 m long and are rigidly fastened at both ends using 
20 mm diameter pins. If the temperature is raised by 60°C, find the 
stresses induced in the bar, tube and pins. 
 

 

 

 

 

 

 

 

 

 

SOLUTION 
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EXAMPLE (4): 

The rigid bar ABC is pinned at B and attached to the two vertical rods. 
Initially, the bar is horizontal and the vertical rods are stress-free. 
Determine the stress in the aluminum rod if the temperature of the steel 
rod is decreased by 40°C. Neglect the weight of bar ABC. 

 

 

 

 

 

SOLUTION:  
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Example (5):  

 

 

 

 

 

 

 

 

Solution:  
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Example (6): 

 

 

 

 

 

 

 

Solution: 
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Example (7): 

 

 

Solution: 

 

 

 

 

 

 

  



Mechanics of Materials 

 
Example (8): 

 

 

 

 

 

 

 

 

 

Solution: 
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Example (9): 

 

 

 

 

 

Solution: 
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H.W.4 

1-  

 

 

 

 

ANS.: 41.6/OC 

 

 

 

 

2-  

 

 

 

 

 

 

ANS.: 
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3-  Two bars are joined together and attached to supports as 

shown. The left bar is brass for which E 90 GPa,  

20×10–6/OC, and the right bar is aluminum for which 

E70 GPa, 25×10–6/OC. The cross-sectional area of 

the brass bar is 500 mm2, and that of the aluminum bar is 

750 mm2. Let us suppose that the system is initially stress 

free and that the temperature then drops 20OC. 

(a) If the supports are unyielding, find the normal stress in each 
bar. 
(b) If the right support yields 0.1 mm, find the normal stress in 
each bar. 

Ans. (a) br 41 MPa, al 27.33 MPa; (b) br 28.4 MPa, al 19 MPa 
 

 

 

 

 

4- An aluminum right-circular cylinder surrounds a steel 
cylinder as shown. The axial compressive load of 200 kN 
is applied through the rigid cover plate shown. If the 
aluminum cylinder is originally 0.25 mm longer than the 
steel before any load is applied, find the normal stress in 
each when the temperature has dropped 20 K and the 
entire load is acting. For steel take E = 200 GPa, a = 12 × 
10–6/°C, and for aluminum assume E = 70 GPa, a = 25 × 
10–6/°C. 

 

Ans. st = 9 MPa, al = 15.5 MPa 

 

 

 


